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1. INTRODUCTION

Sensitivity analysis studies the effect a perturbation of a
design parameter of a model has on the performance of
the model. This line of research dates back to Schweitzer’s
pioneering paper Schweitzer (1968), where the following
question is addressed: Consider a Markov chain with
discrete state space S, transition probability matrix P ,
and unique stationary distribution πP ; what is the effect
of perturbing P by some matrix ∆ on the stationary
distribution, where ∆ is such that Q = P + ∆ is a well
defined transition probability on S? Denote the unique
stationary distribution of P + ∆ by πP+∆. Perturbation
analysis of Markov chains (PAMC) studies bounds of the
type

||πP+∆ − πP || ≤ c||∆||, (1)

where || · || on the LHS of (1) denotes an appropriate
norm on the space of probability distributions, and the
matrix norm on the RHS of (1) is the operator norm
associated with || · ||, for details see Section 2, and c is
the so-called condition number. For a recent overview,
see Cho and Meyer (2001). The above bound has the
attractive feature that it provides a uniform bound on the
ball {Q ∈ P(S) : ||Q − P || < ε}, where P(S) denotes the
set of all Markov transition probabilities over state space
S. More specifically, it holds for the condition number that

sup
{Q∈P(S):||Q−P ||<ε}

||πQ − πP || ≤ εc. (2)

Put differently, c provides a robust perturbation bound
since the norm distance of perturbing P by any Q, such
that Q is no more than ε away from P , is bounded by
εc. It is worth noting that (2) implies that any Q with
||Q − P || < ε has a stationary distribution, which is not
true in general. To avoid this problem, we assume for our
analysis that P is strongly stable with respect to || · ‖,
see Kartashov (1996) for details, which implies that any Q
with ||Q−P || < ε possesses a stationary distribution of Q
as well. That the M/M/1/N queue we study in this paper

is indeed strongly stable will be shown in Theorem 2 of
the paper.

Inspired by (2), we define the robust sensitivity of πP with
respect to P by

d||πP ||
d||P ||

:= lim
ε↓0

sup
{Q∈P(S):||Q−P ||<ε}

||πQ − πP ||
||Q− P ||

,

provided the limit exists. The robust sensitivity can be in-
terpreted as a non-discriminatory sensitivity as it assumes
no model for possible perturbations, which is in contrast
to directional sensitivities; see Section 6 for details.

In order to develop an approach to robust sensitivity
analysis we will combine perturbation analysis of Markov
chains with series expansions of Markov chains. The se-
ries expansion of Markov chains (SEMC) dates back to
Schweitzer (1968), and for more recent work see Cao
(1998), Heidergott and Hordijk (2003); Heidergott et al.
(2006, 2007), Abbas et al. (2013). First, we introduce some
basic concepts. We denote the ergodic projector of P by
ΠP , where

lim
n→∞

1

N

N∑
n=1

Pn = ΠP ,

provided the limit exists. Note that ΠP is a matrix such
that µΠP = πP for any probability distribution µ on S.
For a stationary aperiodic ergodic chain, ΠP exists and
has rows identical to πP . We write D for the deviation
matrix associated with P , where

D =

∞∑
m=0

(Pm −ΠP ) =

∞∑
m=0

(P −ΠP )m −ΠP .

Element (i, j) of D can be interpreted as the expected total
difference in number of visits to a state j from i compared
to the number of visits to j starting in equilibrium. Many
papers have been devoted to the investigation of the
properties of D and the conditions for its existence (see, for
example, Syski (2002); Coolen-Schrijner and Van Doorn
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(2002)). Note that D is finite for any aperiodic finite-state
Markov chain.

Starting point for SEMC is the update formula

πQ = πP + πQ(Q− P )DP , (3)

which is easily checked. Inserting repeatedly the expression
for πQ on the right-hand side yields the following series
expansion

πQ = πP + πP

∞∑
n=1

((Q− P )DP )n

= πP + πP ((Q− P )D)

∞∑
n=0

((Q− P )D)n, (4)

where D is the deviation matrix associated with P . As-
sume for the following that ||(Q−P )D|| < 1, then the van
Neumann series on the RHS of (4) is finite, and applying
norms to (4) it readily follows by SEMC that

||πQ − πP ||
||Q− P ||

≤ ||πP ||
||D||

1− ||(Q− P )D||
. (5)

Hence, we obtain

d||πP ||
d||P ||

≤ lim
ε↓0

sup
{Q:||Q−P ||<ε}

||πP ||
||D||

1− ||(Q− P )D||
.

It is worth noting that bounds of the type as displayed
in Equation (5) are studied in the literature under the
name of strong stability, see Kartashov (1996), and we
will use techniques developed in strong stability theory in
our technical analysis.

Consider the finite M/M/1 queue with capacity N , and
assume that customers that arrive to a full queue are
lost. In applications, the exponential assumption is made
for ease of analytical tractability while the actual system
typically violates this assumption. In this paper we develop
a framework for robust sensitivity analysis of the M/M/1
queue with respect to the interarrival time distribution. In
other words, we will provide bounds for the effect replacing
the exponential interarrival times by generally distributed
ones has on the stationary distribution of the queue length
process of the M/M/1/N queue. In order to do so, we
will consider the queue length process embedded at arrival
moments in the M/M/1/N loss queue.

Surprisingly enough, the theory developed for discrete
state Markov chains in PAMC and SEMC can be made
fruitful for the corresponding non-parametric perturbation
of the interarrival time distribution (from ”M” to ”G,”
say). A key result for this will be that the norm distance of
the transition kernel of the queue length process embedded
at arrivals in the M/M/1/N queue, denoted by P , and the
transition kernel of the queue length process embedded
at arrivals in the GI/M/1/N queue, denoted by Q, can
be bounded in terms of the norm distance of the inter-
arrival time distributions. Let Eλ denote the exponential
distribution with rate λ, and denote by πEλ the stationary
distribution of the queue length process embedded at ar-
rivals in the M/M/1/N loss queue with service rate µ; let G
denote a general service time distribution, and denote by
πG the stationary distribution of the queue length process

embedded at arrivals in the GI/M/1/N loss queue with
service rate µ. Then we will establish a bound for

d||πEλ ||
d||G− Eλ||

:= lim
ε↓0

sup
{G:||G−Eλ||<ε}

||πG − πEλ ||
||G− Eλ||

.

The paper is organized as follows. Notations and prelim-
inaries with the basic theorem on the series expansion
method are provided in Section 2. In Section 3, we present
the M/M/1/N and GI/M/1/N models. In Section 4 we
establish norm bounds for the GI/M/1/N and M/M/1/N
queue, and we compute an upper bound for the robust
sensitivity of the M/M/1/N queue in Section 5. Section 6
is devoted to sensitivity bounds for ”directional” pertur-
bations. We conclude with a discussion of further research.

2. PRELIMINARIES AND NOTATIONS

In this paper, we use the norm ‖.‖v, also called v-norm,
where v ∈ RS is such that v(i) ≥ 1 for all i ∈ S. For a
column vector w ∈ RS the v-norm is given by

‖w‖v = sup
i∈S

|w(i)|
v(i)

,

and for a row vector u> ∈ RS the v-norm is given by

‖u‖v =
∑
i∈S
|u(i)|v(i).

As usual, we write distributions as row vectors and per-
formance functions as column vectors.

For a matrix A ∈ RS×S the v-norm is given by

‖A‖v = sup
i∈S

∑
j∈S |A|(i, j) v(j)

v(i)
,

where |A|(i, j) denotes the (i, j)th element of the matrix
of absolute values of A.

It is worth noting that letting v(i) = 1 for i ∈ S, recovers
the total variation norm, which we denote by ‖ ·‖tv. In the
following we will work with the v-norm as it has the nice
property that v-norm results on probability distributions
carry over easily to performance mappings. More precisely,
let f ∈ RS , then it holds

|πGf − πEλf | ≤ ||πG − πEλ ||v ||f ||v,
and

lim
ε↓0

sup
{G:||G−Eλ||<ε}

|πGf − πEλf |
||G− Eλ||

≤ d||πEλ ||
d||G− Eλ||

||f ||, (6)

provides a robust sensitivity bound on the effect of small
perturbations of Eλ on the stationary cost measure f .

In case that S ⊂ N (like in our application), we let
v(i) = βi, for i ∈ S, for some β ≥ 1. It is worth noting
that β is a free parameter.

3. THE M/M/1/N AND GI/M/1/N MODEL

Consider the GI/M/1/N loss system where inter-arrival
times are independently distributed with general distri-
bution G(t) and service times are distributed with Eµ(t)
(exponential with parameter µ).

Let Yn be the number of customers in the system upon the
arrival of the nth customer. It’s easy to prove that Yn forms
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a Markov chain with a transition matrix (Q = (qi,j)i,j∈S),
with entries

qij =

 α′i if j = 0,
b′i−j+1 if 1 ≤ j ≤ i+ 1,
0 if i+ 1 ≤ j ≤ N ,

for 0 ≤ i ≤ N − 1, and for i = N

qNj =

{
α′N−1 if j = 0,
b′N−j if 1 ≤ j ≤ N,

where

α′i = 1−
i∑

k=0

b′k,

and

b′k =

∫ ∞
0

e−µt(µt)k

k!
dG(t).

The transition kernel (P = (pi,j)i,j∈S) of the queue length
process of the M/M/1/N loss system embedded at service
completions is given by

pij =

{
αi if j = 0,
bi−j+1 if 1 ≤ j ≤ i+ 1,
0 if i+ 1 ≤ j ≤ N ,

for 0 ≤ i ≤ N − 1, and for i = N

pNj =

{
αN−1 if j = 0,
bN−j if 1 ≤ j ≤ N,

where

bk =

∫ ∞
0

e−µt(µt)k

k!
dEλ(t) =

λµk

(λ+ µ)k+1
,

and

αi = 1−
i∑

k=0

bk =

(
µ

λ+ µ

)i+1

.

We denote the taboo kernel of the M/M/1/N queue with
taboo set {0} by (T = (Ti,j)i,j∈S) , i.e.,

Tij =

{
pij if i > 0 and j ≥ 0,
0 if i = 0 and j ≥ 0 .

In words, T is a deficient kernel representing an M/M/1/N
system that avoids reaching the empty state. In the
following section we will establish the main performance
bounds for the M/M/1/N and the GI/M/1/N queue.

4. ESTABLISHING NORM BOUNDS

Let
D̂ =

∑
n≥0

Tn(I −ΠP ),

where finiteness of D̂ follows from the fact that the
deviation matrix exists for finite state-space models.

Theorem 1. Let

η :=
1 + ‖πP ‖v
1− ‖T‖v

.

If ||T ||v < 1, then

||D̂||v ≤ η,
and, if in addition, η||Q− P || < 1, then

‖πQ − πP ‖v ≤ ‖πP ‖v
η||Q− P ||v

1− η||Q− P ||v
.

Proof. We have

πQ = πP
∑
n≥0

((Q− P )D)n. (7)

The following equality has been established in Kartashov
(1996)

D = (I −ΠP )
∑
n≥0

Tn(I −ΠP ). (8)

Note that (Q−P )(I−ΠP ) = (Q−P ) and multiplying (8)
by (Q− P ) yields

(Q− P )D = (Q− P )D̂ = (Q− P )
∑
n≥0

Tn(I −ΠP ).

From ||T‖v < 1, we have

‖(Q− P )D̂‖v ≤ ‖(Q− P )‖v

∥∥∥∥∥∥
∑
n≥0

Tn

∥∥∥∥∥∥
v

‖(I −ΠP )‖v

≤ ‖(Q− P )‖v
1

1− ‖T‖v
(1 + ‖πP ‖v)

= η||Q− P ||.

Inserting the above expression into (7)

‖πQ − πP ‖v ≤ ‖πP ‖v
∑
n≥1

(η||Q− P ||)n.

If η||Q− P || < 1, we obtain

‖πQ − πP ‖v ≤ ‖πP ‖v
η||Q− P ||

1− η||Q− P ||
,

which proves the claim. 2

Theorem 2. Suppose that ρ := λ/µ < 1. For all β such
that

1 ≤ β < µ

λ
,

it holds that

||T ||v ≤
λβ

λ+ µ− µ

β

(
1−

(
µ

β(λ+ µ)

)N)
< 1

and

‖πP ‖v =
(1− ρ)(1− (ρβ)N+1)

(1− ρN+1)(1− ρβ)
.

Proof. We will show that there exists some constant
ψ < 1 such that Tv(l) ≤ ψv(l) for all l ∈ S.
For 0 ≤ l ≤ N − 1, by computation
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(Tv)(l) =

N∑
j=0

βjTlj =

N∑
j=1

βjplj =

l+1∑
j=1

βjbl+1−j

=

l∑
j=0

βl+1−jbj =
λ

λ+ µ
βl+1

l∑
j=0

(
µ

β(λ+ µ)

)j

=
λ

λ+ µ
βl+1

1−
(

µ

β(λ+ µ)

)l+1

1− µ

β(λ+ µ)

= λβl+1

1−
(

µ

β(λ+ µ)

)l+1

λ+ µ− µ

β

.

For l = N ,

(Tv)(N) =

N∑
j=1

βjpNj =

N∑
j=1

βjdN−j

=

N−1∑
j=0

βN−jbj =
λ

λ+ µ
βN

N−1∑
j=0

(
µ

β(λ+ µ)

)j

= λβN
1−

(
µ

β(λ+ µ)

)N
λ+ µ− µ

β

,

and for 0 ≤ l ≤ N

(Tv)(l) ≤ βl λβ

λ+ µ− µ
β

(
1−

(
µ

β(λ+ µ)

)N)
,

for all β ≥ 1. We have(
1−

(
µ

β(λ+ µ)

)N)
< 1,

and, assuming that λ/µ < 1 and 1 ≤ β < µ/λ, we obtain

λβ

λ+ µ− µ
β

< 1.

Hence,

ψ =
λβ

λ+ µ− µ
β

(
1−

(
µ

β(λ+ µ)

)N)
< 1.

Therefore, there exists ψ < 1 such that for all l ∈ S
(Tv)(l) ≤ βlψ, for all β such that 1 ≤ β < µ/λ , which
proves the first part of the claim.

For the second part of the proof note that the station-
ary distribution of the queue length processes at arrival
moments in the M/M/1/N loss queue is, by the PASTA
property, equal to the stationary distribution of the queue
length process, and has a well known closed form solution.
Computing the v-norm of this distribution is completes
the proof. 2

For the following, let

W := ||G− Eλ||tv =

∫ ∞
0

|G− Eλ|(dt),

and observe that

W ≤ ||G− Eλ||v

for β ≥ 1.

Theorem 3. If 1 ≤ β < µ/λ, then it holds for β ≥ 1 that

‖(P −Q)‖v ≤ (1 + β)W.

Proof. For all β such that 1 ≤ β < µ/λ, we have

‖P −Q‖v = max
0≤l≤N

1

βl

N∑
j=0

βj |plj − qlj |,

= max
0≤l≤N

1

βl

|pl0 − ql0|+ N∑
j=1

βj |plj − qlj |

 ,

≤ max
0≤l≤N

1

βl
|pl0 − ql0|+ max

0≤l≤N

1

βl

N∑
j=1

|plj − qlj |.

We set A = max
0≤l≤N

1

βl
|pl0 − ql0| and

B = max
0≤l≤N

1

βl

N∑
j=1

|plj − qlj |.

For 0 ≤ l ≤ N − 1

|pl0 − ql0|= |
l∑

j=0

bj −
l∑

j=0

b′j |

≤
l∑

j=0

∫ ∞
0

1

j!
e−µt(µt)j |G− Eλ|(dt)

=

∫ ∞
0

l∑
j=0

(µt)j

j!
e−µt|G− Eλ|(dt)

≤
∫ ∞

0

|G− Eλ|(dt) = W.

For l = N

|pN0 − qN0|= |
N−1∑
j=0

bj −
N−1∑
j=0

b′j |

≤
∫ ∞

0

N−1∑
j=0

(µt)j

j!
e−µt|G− Eλ|(dt)

≤
∫ ∞

0

|G− Eλ|(dt) = W.

So, we have A ≤W . For 0 ≤ l ≤ N − 1

1

βl

N∑
j=1

|plj − qlj |

≤ 1

βl

l+1∑
j=1

βj
∫ ∞

0

1

(l + 1− j)!
e−µt(µt)l+1−j |G− Eλ|(dt)

≤ β
∫ ∞

0

e−µt
l+1∑
j=1

1

(l + 1− j)!

(
µt

β

)l+1−j

|G− Eλ|(dt)

≤ β
∫ ∞

0

|G− Eλ|(dt).

For l = N
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1

βN

N∑
j=1

|pNj − qNj |

≤ 1

βN

N∑
j=1

βj
∫ ∞

0

1

(N − j)!
e−µt(µt)N−j |G− Eλ|(dt)

≤
∫ ∞

0

e−µt
N∑
j=1

1

(N − j)!

(
µt

β

)N−j
|G− Eλ|(dt)

≤
∫ ∞

0

|G− Eλ|(dt).

Therefore, B ≤ βW , and we obtain ‖P −Q‖v ≤ (1+β)W ,
which concludes the proof. 2

5. ROBUST SENSITIVITY ANALYSIS

Elaborating on the norm bounds provided in the previous
section, we will establish in the next theorem the robust
sensitivity bound.

Theorem 4. If

(1 + β)W
1 + ‖πEλ‖v
1− ‖T‖v

< 1,

then it holds that

lim sup
‖G−Eλ‖→0

‖πQ − πP ‖v
‖G− Eλ‖v

≤ inf
β≥1
||πEλ ||v(1 + β)

1 + ‖πEλ‖v
1− ‖T‖v

.

Proof. Noting that D in (4) can be replaced without loss

of generality by D̂, rewriting (5) yields

||πG − πEλ ||v ≤ ||πEλ ||v
||Q− P ||v ||D̂||v

1− ||(Q− P )||v ||D̂||v
. (9)

By Theorem 1 it holds

||D̂||v ≤
1 + ‖πEλ‖v
1− ‖T‖v

and by Theorem 3 we have ||Q−P || ≤ (1+β)W . Inserting
the bounds into (9) yields

||πG − πEλ ||v ≤ ||πEλ ||v
(1 + β)W

1+‖πEλ‖v
1−‖T‖v

1− (1 + β)W
1+‖πEλ‖v
1−‖T‖v

. (10)

Dividing by W and letting W tend to zero gives

lim
ε↓0

sup
G:||G−Eλ||<ε

||πG − πEλ ||v
||G− Eλ||v

≤ ||πEλ ||v(1 + β)
1 + ‖πEλ‖v
1− ‖T‖v

,

which proves the claim. 2

Using the fact that the total variational norm is smaller
than or equal to the v-norm for β > 1, we arrive at the
following corollary.

Corollary 5. In the special case of the total variational
norm, the statement put forward in Theorem 4 simplifies
to

lim sup
‖G−Eλ‖tv→0

‖πQ − πP ‖tv
‖F − Eλ‖tv

≤ 4(λ+ µ)N

µN
.

λ = 1 λ = 5

β d‖πEλ‖/d‖Eλ‖ β d‖πEλ‖/d‖Eλ‖
1.01 7.0683 1.01 44.5544
1.04 7.0335 1.04 42.6722
1.06 7.0240 1.06 42.1231
1.08 7.0237 1.08 41.9956
1.2 7.1664 1.1 42.2163
1.5 8.1219 1.2 47.3913
2 10.7104 1.4 78.6925
5 67.1664 1.6 171.1264
8 812.4779 1.9 539.4901

Table 1. The robust perturbation bound for
varying β.

λ = 1 λ = 5

β (d‖πEλ‖/d‖Eλ‖)‖f‖ β (d‖πEλ‖/d‖Eλ‖)‖f‖
1.01 39.9521 1.01 251.8336
1.04 33.3522 1.04 202.3467
1.08 26.5569 1.08 158.7860
1.2 14.4000 1.1 142.9801
1.5 7.2195 1.2 95.2274
2 5.3552 1.4 86.0340
3 6.4319 1.5 99.6969
5 13.4333 1.7 196.8188
8 101.5597 1.9 754.8870

Table 2. The robust perturbation bound for
the mean queue length for varying β.

In the following, we will present numerical results. We
consider an M/M/1/N system, with Poisson arrival rate
λ, service rate µ = 10, and N = 6. In Table 1 we present
numerical values for the bound put forward in Theorem 4.
Note that β does not influence the stationary distribution
of the queue as β only defines the norm.

As the table illustrates, the value for β that minimizes the
robust bound depends on λ. For λ = 1, β = 1.08 is the
best choice yielding 7.0237 for the robust sensitivity, and
for λ = 5, β = 1.08 is the best choice yielding 41.995 for
the robust sensitivity.

Following (6), we turn as next to our robust bound for
the mean queue length. We consider again an M/M/1/N
system, with Poisson arrival rate λ, service rate µ = 10,
and N = 6. In Table 2 we present numerical values for the
bound obtained from combining the bound in Theorem 4
with (6).

As the table illustrates, the value for β that minimizes
the robust bound depends on λ. For λ = 1, β = 2 is the
best choice yielding 5.355 for the robust sensitivity, and
for λ = 5, β = 1.4 is the best choice yielding 86.034 for
the robust sensitivity.

6. DIRECTIONAL SENSITIVITIES

From a geometrical point of view, the robust sensitivity
estimate is based on a worst case analysis. Indeed, the
supremum in the definition requires that the interarrival
time distribution that constitutes the worst case pertur-
bation has to be found for given ε, which in itself is an
optimization problem. Obviously, such a robust sensitivity
indicator is an upper bound for the effect of any ”direc-
tional” sensitivity that is obtained from perturbing Eλ
with a concrete and fixed distribution.
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There is a wealth of results in the literature providing
condition numbers for particular queuing systems. In this
line of research P and Q are fixed and the perturbation is
used for bounding the effect on the stationary distribution
of switching from P to Q. Elaborating on (10) we have the
following perturbation bound

||πG − πEλ ||v ≤ ||πEλ ||v
(1 + β)W

1+‖πEλ‖v
1−‖T‖v

1− (1 + β)W
1+‖πEλ‖v
1−‖T‖v

.

Unfortunately, this bound only applies under the condition
that

W ≤ 1

1 + β

1− ‖T‖v
1 + ‖πEλ‖v

.

Letting β = 1, then || · ||v yields the total variational norm,
for which it holds that ‖πEλ‖tv = 1. Inserting this bound
together with the bound for ‖T‖tv into the restriction for
W , we arrive at

W ≤ 1

4

(
µ

λ+ µ

)N
.

Since µ < λ + µ the bound on the above RHS converges
geometrically fast to zero in N . Provided that W is
bounded by the expression on the above RHS, we arrive
at the overall bound

||πG − πEλ ||tv ≤
4W (λ+ µ)N

µN − 4W (λ+ µ)N
.

Even without considering the actual quality of the bound,
the simple fact that it is only defined for a rather limited
range of total variational distances suggests that this is not
a good way to proceed for obtaining meaningful bounds.

However, starting from (3) and applying the total varia-
tional bound, i.e., β = 1, we obtain

||πG − πEλ ||tv ≤ ‖P −Q‖tv‖D̂‖tv
and inserting the previously obtained bounds in Theorem 3
and Theorem 1 we arrive at

||πG − πEλ ||tv ≤ 4W
1

1− ||T ||tv
.

Is is worth noting that this bound holds with the only
restriction that λ < µ. To see this, note for λ < µ, β = 1
it holds that

1− µ

(λ+ µ)
< 1,

which implies that the bound on ||T ||v displayed in Theo-
rem 2 is applicable. Hence, the overall bound becomes

||πG − πEλ ||tv ≤ 4W

(
λ+ µ

µ

)N
.

Again, this bound will be only meaningful for small values
of W . To see this, note that the total variational norm
of πG − πEλ is bounded by 2, assuming, for example,
4 = µ = 2λ, it follows that the bound only drops below
the trivial bound of 2 for

W ≤ 1

2

(
2

3

)N
.

Consequently, letting N = 6 like in the previous example
we obtain W ≤ 0.0438. To summarize, the norm bound
approach for establishing bounds on directional sensitivi-
ties fails to provide numerically convincing results.

7. CONCLUSION

In this paper, we have developed a framework for robust
sensitivity estimates for the finite M/M/1 queue with
respect to a perturbation of the interarrival time distri-
bution. The extension of our framework to more complex
queues and networks of queues is topic of further research.
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